Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(4): e202316696, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38051776

RESUMO

The development of chiral compounds with enhanced chiroptical properties is an important challenge to improve device applications. To that end, an optimization of the electric and magnetic dipole transition moments of the molecule is necessary. Nevertheless, the relationship between chemical structure and such quantum mechanical properties is not always clear. That is the case of magnetic dipole transition moment (m) for which no general trends for its optimization have been suggested. In this work we propose a general rationalization for improving the magnitude of m in different families of chiral compounds. Performing a clustering analysis of hundreds of transitions, we have been able to identify a single group in which |m| value is maximized along the helix axis. More interestingly, we have found an accurate linear relationship (up to R2 =0.994) between the maximum value of this parameter and the area of the inner cavity of the helix, thus resembling classical behavior of solenoids. This research provides a tool for the rationalized synthesis of compounds with improved chiroptical responses.

2.
Analyst ; 140(5): 1717-30, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25612326

RESUMO

We evaluated the use of the peptide mass fingerprint (PMF) obtained by matrix assisted laser desorption and ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) to track changes in the structure of a protein. The first problem we had to overcome was the inherent complexity of the PMF, which makes it difficult to compare. We dealt with this problem by developing a cluster-based comparison algorithm which takes into account the proportional error made by the mass spectrometer. This procedure involves grouping together similar masses in an intelligent manner, so that we can determine which data correspond to the same peptide (any slight differences can be explained as experimental errors), and which of them are too different and thus more likely to represent different peptides. The proposed algorithm was applied to track changes in a commercially available monoclonal antibody (mAb), namely rituximab (RTX), prepared under the usual hospital conditions and stored refrigerated (4 °C) and frozen (-20 °C) for a long term study. PMFs were obtained periodically over three months. For each checked time, five replicates of the PMFs were obtained in order to evaluate the similarities between them by means of the occurrences of the particular peptides (m/z). After applying the algorithm to the PMF, different approaches were used to analyse the results. Surprisingly, all of them suggested that there were no differences between the two storage conditions tested, i.e. the RTX samples were almost equally well preserved when stored refrigerated at 4 °C or frozen at -20 °C. The cluster-based methodology is new in protein mass spectrometry and could be useful as an easy test for major changes in proteins and biopharmaceutics for diverse applications in industry and other fields, and could provide additional stability data in relation to the practical use of anticancer drugs.


Assuntos
Algoritmos , Anticorpos Monoclonais Murinos/análise , Anticorpos Monoclonais Murinos/química , Mapeamento de Peptídeos/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Antineoplásicos/análise , Antineoplásicos/química , Análise por Conglomerados , Humanos , Rituximab
3.
Anal Bioanal Chem ; 406(11): 2591-601, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24577575

RESUMO

The aim of this article is to study tree-based ensemble methods, new emerging modelling techniques, for authentication of samples of olive oil blends to check their suitability for classifying the samples according to the type of oil used for the blend as well as for predicting the amount of olive oil in the blend. The performance of these methods has been investigated in chromatographic fingerprint data of olive oil blends with other vegetable oils without needing either to identify or to quantify the chromatographic peaks. Different data mining methods-classification and regression trees, random forest and M5 rules-were tested for classification and prediction. In addition, these classification and regression tree approaches were also used for feature selection prior to modelling in order to reduce the number of attributes in the chromatogram. The good outcomes have shown that these methods allow one to obtain interpretable models with much more information than the traditional chemometric methods and provide valuable information for detecting which vegetable oil is mixed with olive oil and the percentage of oil used, with a single chromatogram.


Assuntos
Mineração de Dados/métodos , Contaminação de Alimentos/análise , Óleos de Plantas/química , Cromatografia/métodos , Análise Discriminante , Azeite de Oliva
4.
PLoS One ; 8(3): e58284, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554883

RESUMO

BACKGROUND: The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. METHODOLOGY/PRINCIPAL FINDINGS: In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. CONCLUSIONS/SIGNIFICANCE: We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency in the connection between the multienzymatic complexes, and stably retain these modifications. Here for the first time, we have introduced the general concept of attractor metabolic network, in which this dynamic behavior is observed.


Assuntos
Escherichia coli/metabolismo , Helicobacter pylori/metabolismo , Metaboloma/fisiologia , Modelos Biológicos
5.
BMC Bioinformatics ; 9: 161, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18366735

RESUMO

BACKGROUND: Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. RESULTS: We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. CONCLUSION: We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results.


Assuntos
Algoritmos , Proteínas/química , Proteínas/ultraestrutura , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Sequência de Aminoácidos , Dados de Sequência Molecular , Reconhecimento Automatizado de Padrão/métodos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...